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An investigation is made of how a recently found q-state generalization of the 
hard-square model fits into a more general phase diagram. The investigation is 
done by Monte Carlo and series expansion methods. Evidence is presented that 
the one-dimensional manifold of parameters along which the model is exactly 
solvable represents a line of first-order phase transitions. 
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1. I N T R O D U C T I O N  

Two-dimensional lattice models in statistical mechanics are studied for 
many reasons: First there is Onsager's celebrated exact solution of the two- 
dimensional Ising model (1) that revolutionized the theory of phase trans- 
itions. Since then a number of other models have been exactly solved (2'3) 
which are now seen as representatives of the most important universality 
classes describing phase transitions in two dimensions. (4'5) This is of great 
significance, since one-dimensional systems with short-range interactions 
do not have singular behavior at finite (nonzero) temperatures, whereas the 
combinatorics in three dimensions has so far not yielded to exact solutions 
but in two exceptional cases. 

Exact solutions therefore seem to be limited, at least for the time 
being, to two dimensions. Notwithstanding this limitation, much we know 
about critical phenomena has been learned from these models. Also, in 
recent years refined experimental techniques have made it possible to study 
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physical systems in two dimensions, such as surfaces of metals and alloys 
or adsorbed monolayers of gases on such surfaces. (7'8) 

In most cases exactly solved models are too restricted to fully describe 
physical systems. There are, however, powerful approximate techniques, 
such as series expansions and Monte Carlo simulations, which allow one to 
treat more general systems and make predictions that can be tested 
experimentally. 

The hard-core lattice gas is an example of such a system: Its phase 
structure was originally studied by Gaunt and Fisher. (9'1~ This study, using 
series expansion techniques, later prompted an exact solution by Baxter 
within the hard-square lattice gas. (1~) Fisher and Gaunt's results can also 
be used to make predictions about a number of physical systems (such as 
adsorption of C1 on Ag(100) (8). Originally the interest in various types of 
lattice gases had been concentrated on the character of the liquid-solid and 
gas-liquid phase transitions. (12) The aim was to determine what properties 
of the intermolecular potential drive the first-order phase transition. These 
properties are now fairly well understood, and work on these systems 
focuses on other goals. One of these goals is to bring the exact results in 
line with predictions made by the conformal bootstrap program/4'5'~3) The 
other, as mentioned above, is to apply the results to physical systems. 

All of this makes this class of models very interesting. In addition, the 
pursuit of exact solutions of generalizations of the hard-square model 
has led to a number of new combinatorial theorems ~ related to the 
Rogers-Ramannjan identities. There exist essentially two different types of 
generalizations: One is the ABF hierarchy of Andrews etal .  ~ Here the 
restriction of the hard-square model is v~ritten as 

0 ~< O'i+ O'j~ 1 (0"i, O'j = 0, 1) (1) 

where i and j are neighboring sites. This restriction is then generalized 
to(~4,15) 

k - l < ~ a i + a j < ~ k  (ai, a j=O, . . . , k )  (2) 

(For convenience I restrict myself here to the r = odd cases of the ABF 
hierarchy.) Further relaxation of (2) to 

O <~ ff i + G j <~ k (3) 

also leads to exactly solvable cases. (14-16'18) 
Another type of generalization starts from the condition 

ffiffj = O, ffi' ~j = O, 1 ..... q (4) 
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Condition (4) with q = 1 is equivalent to condition (1). Generalizations of 
type (4) have been made by a number of authors. 119 22) Models of type (4) 
have an immediate physical interpretation: The site variable a~ = l stands 
for a hard-square particle of species l occupying site i. Nearest neighbor 
sites cannot be occupied simultaneously. There are q different species 
overall. The model allows for anisotropic next nearest neighbor inter- 
actions. 

The hard-square model (q= 1) has been studied extensively, (Im3-26) 
and I shall not get back to it here. Also, the case q = 2 has been studied in 
detail. (2~ I therefore turn to the case of condition (4) with q~>3, for 
which a commuting family of transfer matrices has been obtained. (22~ This 
family is parametrized in terms of one spectral parameter and has no tem- 
perature-like variable. It is different from both Baxter's q = 1 and Pearce 
et al.'s q = 2 cases. The purpose of this paper is to understand how this new 
exact solution fits into a larger phase diagram that contains all the other 
known solutions. The analysis is done by Monte Carlo methods and series 
expansions. 

The results of the computer simulations indicate that the one-dimen- 
sional exactly solvable manifold of the q-species hard-square model (which 
I shall call EL from here on) is a first-order coexistence curve. On this line 
a homogeneous solid (a x/2 x xf2 densely packed state of one type of 
particle only) coexists with a gaseous phase (a low-density disordered 
phase containing all types of particles with equal probability). 

The results here presented are not exact. However, the mutual 
agreement of Monte Carlo results with exact predictions on E L and of the 
series with the Monte Carlo results away from EL makes the evidence very 
strong. 

In the following main section of this paper I first define the model. I 
then present the results of the simulation and of the series expansion. I end 
with an outlook on what else this combination of methods could be used 
for. 

2. D E F I N I T I O N S  

The model I am considering is an extended version of the one dis- 
cussed in ref. 22. The model is defined on a two-dimensional square lattice 
with periodic boundary conditions in the IRF language/2) Each lattice site 
can be occupied by one out of q different species of particles denoted by 
a i =  1 ..... q. If the site i is unoccupied, ~ i=  0. Neighboring sites cannot be 
occupied simultaneously. This model can be interpreted graphically in the 
following fashion (Fig, 1): Hard-square particles of q different species live 
on the sites of a two-dimensional square lattice; particles cannot overlap, 
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Fig. 1. Typical low-density configuration for q = 4. 

implying an infinite nearest neighbor repulsion, and particles that touch 
interact (next nearest neighbor interaction). Phrased in the IRF language, 
the model is given in terms of Boltzmann weights defined on plaquettes 
(Fig. 2). The weights co~, c%(i), co3(i), co4(i), COs(i), co6(i , j), and co7(i, j )  can 
in principle depend on i and j ( ir  as long as they obey the restrictions 
cod/, j)  = co6( j, i) and co7(i, j)  = co7(L i). 

In this paper I do not consider weights co with i, j dependence. The 
Yang-Baxter equations have not been solved under these general 
assumptions. However, for the case that the weights are independent of i 
and j a number of solutions are known (Jimbo and Miwa's families TI, TII, 
El, and EII for q = 2, a case which reduces trivially to the q = 1 hard- 
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Fig. 2. Definition of the face weights. 
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square model and the case EL for q ~> 3.) To be specific, I shall consider 
weights of the following form: 

(0a ~ 1, 0)2"=-2 , (A.)3~- Z 
(5) 

0)4 ~ z2eL~ (05 = 22em,  (06 = Z2es (07 = z2eM 

The parameter z acts as a fugacity. (To be more precise, each particle on 
the lattice contributes a factor z 4 to the partition function.) - L  is the 
interaction energy between identical particles across SW-NE diagonals 
( - M  for SE-NW diagonals, respectively); - L  and -214 are the inter- 
action energies of differing particles across the two diagonals, respectively. 
In this notation E L is described by the following equations (the variable x 
ranges between 1 and q -  1): 

z=(q_~q ~)a/4 {(x-1)[(q-!j/x-1]} '/2 
( q -  2 ) [ ( q -  1 ) - x / ( q -  1)] 

xa = ( x -  1)2 

(q - 2)[(q - 1) -- 1/x] 
x2 = [(q-- 1 ) / x -  1] 2 

q - 2  
y l  = x--1  

q- -2  
Y 2  - -  (q _ 1 )/x - 1 

{6) 

where 

Xl  = eL, X2 ~ eM, Ya = eE, Y2 = e~4 

For comparison I also give the corresponding expressions for the hard- 
hexagon model and the cases E and T of Jimbo and Miwa (note that their 
two families in each case, namely E+ and T+, can be obtained by 
interchanging x 2 and Y2; they are all contained in the following 
expressions). 

Hard hexagons: 

~=fl=O 

z = q _ l / 4 [ ( 1  --1/Xa)(_____ll Z 1/___x2)] 1/4 

X I X 2 - - X  a ~ X  2 

(7) 
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El, El i  (q = 2): 

X l -~-- 

Z - ~  

TI, TII (q = 2): 

0{+/3 0{+/3 
X2 = __/32)1/2 /3(1 -0{2) 1/2' 0{(1 

1 [-0{/3(1 -0{2)(1 -/32)(1 _]_ 0{/3 ) ]1/4 
21/4 0{ 3-/3 

(1 _ 0{2)1/2 (1 - / 3 2 )  */2 1 
Xl = /32 , x2 = 0{2 , z =2-r7 a (0{/~),/2 

In all three cases 0{ and/3 are given by 

(8) 

x l y l -  1 x 2 Y 2 -  1 
0{ = - -  fl = - -  (9) 

x, y l +  1' x2Y2+ 1 

Comparing these four expressions, the differences between the four families 
can clearly be seen. The solution manifolds for H, El, Ell, TI, and TII are 
two dimensional, while EL is one dimensional. It is also clear that EL is not 
a submanifold of either of the other three families: EL is only defined for 
q >/3, while E and T are defined for q = 2 only. H is defined for all values of 
q. However, EL and H only intersect in two points, the left and the right 
shift points. EL therefore represents a distinct new solution manifold. In 
particular, due to the fact that EL is one dimensional, there is no tem- 
perature-like variable on EL. These observations lead to three questions 
which I shall try to answer in the following section: 

1. Is EL a locus of phase transition points? 

2. Of what nature are these phase transition points? 

3. How reliable are the predictions concerning 1 and 2? 

I shall try to answer these questions in the following three sections. 

3. IS E, A LOCUS OF PHASE T R A N S I T I O N  POINTS? 

In order to study the model away from EL, I vary z [as defined in 
(5)] around zL, its value on EL. Proceeding from small to larger values of 
z one expects at some point to encounter a phase transition from a gaseous 
to a solid phase. In this particular case this means that one goes from a 
low-density random arrangement of particles to a densely packed state. 
Due to the hard-core repulsion of the particles, they arrange themselves on 
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either one of the two sublattices in the ordered phase (Fig. 4). Along the 
entire solvable line EL the interactions are attractive and in addition the 
interactions between identical particles are much stronger than the ones 
between different particles. To be more specific, consider two states A and 
B. State A is a densely packed configuration of identical particles and state 
B is identical to state A, except that one particle in the bulk is replaced by 
one of a different type. For the total weights WA and WB of these two 
configurations, i.e., the products of all the face weights of each state, one 
gets the following estimate, which is valid for all values of x and q: 

W A  ~ 2 2 0)4(3) 5 
WB 2 2 > 100 (10) 

0)6097 

This means that the ordered phase will be a homogeneous solid, i.e., 
consisting of one type of particle only. The order parameters relevant in 
this transition are given by 

p~(i)-pB(i) 
r i=  (11) 

2 

where pA(i) and pB(i) are the densities of particles of type i on sublattices A 
and B, respectively. For values of z >ze,  i.e., in the ordered regime, one 
expects q ordered phases coexisting with one disordered phase. For the j t h  
ordered phase rl,..., rj 1, ri+1 . . . . .  rq=O and r j=0 .  Since this model is 
symmetric with respect to permutation of particle type, it is only necessary 
to study the combination 

q 

R= ~ [rA(j)--rB(j) ] (12) 
j = l  

I performed this study using Monte Carlo techniques. Monte Carlo 
simulations are well established in statistical physics and extensive 
literature exists on this subject. (41-54) I believe, however, that this is the first 
study of this type performed on an IRF model with strong constraints 
reducing the space of allowed states. There are complications associated 
with using the Monte Carlo method on these systems since it is not a priori 
clear that the algorithm properly samples the entire energy surface. While it 
is known that the algorithm is ergodic for spin systems, (41) one cannot 
make such a statement here. Results therefore have to be considered with 
greater care. 

It is for this reason that I have used a series expansion of the particle 
density to check the validity of the Monte Carlo results. I also stress at this 
point that the numerical calculations have been done for the case q = 3 

822/54/1-2-14 
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Fig. 3. Order parameter R vs. fugacity z, x = x/2, 14 x 14 lattice. 

only.  T h e  qua l i t a t i ve  fea tures  of  the  m o d e l  do  n o t  va ry  wi th  q; the 

n u m e r i c a l  va lues  of  cou r se  do.  Th i s  is a different  s i t ua t i on  f r o m  the  q-s ta te  

Po t t s  mode l ,  where  the  p a r a m e t r i z a t i o n  of  the  weights  is d i f ferent  for  

q = 3 ,  4 and  q > 4 .  

F i g u r e  3 shows  a typ ica l  resul t  of  a s imple  s imula t ion .  T h e  s i m u l a t i o n  

was d o n e  for  a 14 x 14 la t t ice  and  a va lue  of  x = x//-i  T h e  f igure shows  the  

resul ts  for the  o r d e r  p a r a m e t e r  as a f unc t i on  o f  the  p a r a m e t e r  z def ined  in 

Eq.  (5). T h e  resul t  l ooks  s t rong ly  ind ica t ive  of  a phase  t r an s i t i on  at  one  

pa r t i cu l a r  va lue  z = zc. T a b l e  I d i sp lays  the  va lues  z = ZL t ha t  c o r r e s p o n d  to 

EL, the  exac t ly  so lvab le  man i fo ld .  [ N o t e  t h a t  the  va lues  o f  x r ange  

b e t w e e n  1 and  ( q -  1) 1/2 only,  since r ep l ac ing  x--+ ( q -  1 )Ix mere ly  ro ta t e s  

Table I. The Values of zr as Found by the M C  Simulat ion for  Various Lattice 
Sizes and Values of x, the Spectral  Parameter  a 

Lattice size x = 1.1 x = 1.2 x = 1.3 x = ~ x = 1.5 

8 • 8 0.251 0.333 0.348 0.365 0.363 
10 x 10 0.256 0.319 0.350 0.368 0.370 
12 x 12 0.259 0.330 0.360 0.371 0.365 
14 x 14 0.260 0.320 0.356 0.365 0.370 
16 x 16 0.259 0.327 0.360 0.372 0.368 
17 x 17 0.258 0.330 0.368 0.375 0.375 
18 x 18 0.252 0.320 0.360 0.374 0.369 

a The values of zc all carry an error of approximately +0.010. 



q-State Hard-Square Model 209 

Table II. Exact Values,  to Three Decimals, of z L, Describing the Exactly 
Solvable Manifold E L, as a F u n c t i o n  of the Spectral Parameter x a 

x 1.1 1.2 1.3 x ~  1.5 

z c 0.259 0 .330 0.363 0.374 0.369 

a T h e  values  o f  z c o f  the  T a b l e  I agree  wi th in  e r r o r  ba r s  wi th  z r .  

the lattice by 90 ~ The results are therefore reflection invariant around 
x = ( q -  1)1/2] For comparison the values of the transition fugacities z = zc 
are listed in Table II for various values of x and various lattice sizes. These 
results from a simple simulation on small lattices already indicate the 
existence of a phase transition and give the location to be on the exactly 
solvable line. These results also seem to indicate that the transition is of 
first order. However, a more detailed analysis is necessary to settle the 
question of the existence and the order of the transition. I shall present this 
analysis in the next section. 

4. OF WHAT NATURE ARE THE PHASE TRANSITION POINTS 
ALONG E,? 

Recently Challa e t a / .  (27'28) have suggested a finite-size analysis for 
first-order transitions. Although their analysis is phenomenological in 
nature, it makes very accurate predictions for the Ising model and for the 
Potts model. I have applied their method to the present problem and find 
that the results are consistent with the assumption that the phase transition 
is of first order. 

If the present model exhibits a first-order transition, one expects dis- 
continuities in the internal energy, the density, and the quantity R defined 
in the previous section. These discontinuities are reflected in 6-function 
singularities in the specific heat, the compressibility, and the staggered 
compressibility. In the finite system under consideration in the simulation 
the singularities are rounded and shifted. Careful analysis of how the 
rounding and shifting occur as functions of the size of the lattice allows one 
to extrapolate to the thermodynamic limit. 

In particular, Challa et  al. have considered a .quantity of the type 

( D  ~ ) 
V L ~- 1 3(D2)2 (13) 

From a phenomenological analysis they deduce the following behavior 
for Vc: 
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1. In the disordered regime, far away from the phase transition, 
VL-~2/3 as L ~  ~ .  

2. At the transition point in the finite system z~ VL has a minimum. 
At a second-order phase transition this minimum disappears as L ~ ~ .  At 
a first-order transition the minimum persists and the approach of the 
minimum value to the limiting value is linear in 1/L 2. 

I have studied quadratic square lattices of linear dimensions 10, 18, 26, 
30, 34, and 40 for the case q = 3 and x --- xfl2. I have monitored the quan- 
tities VL, the specific heat, and the compressibility. 

Examples of the results for a lattice of 26 x 26 sites are shown in 
Figs. 4 - 6. The minimum in Fig. 4 deepens and narrows as the size of the 
lattice increases. The maxima in Figs. 5 and 6 increase and narrow similarly 
with increasing lattice size. The location of the maxima and the minimum 
also move with the size of the lattice. The most significant result is shown 
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Fig. 4. Quan t i t y  V L vs. fugacity z, x = x /2 ,  26 x 26 lattice. 
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in Fig. 7. There I plot the depth of the minimum of VL versus 1/L 2. 
According to refs. 27 and 28, this function should become linear for larger 
and larger lattices and at a first-order transition extrapolate to a value less 
than 2/3 as L ~ ~ .  At a second-order transition the function extrapolates 
to 2/3. The results in Fig. 7 are consistent with this picture and, most 
importantly, they show that the minimum of VL persists as L ~ ~ .  This is 
so since the line extrapolates to a value that is clearly less than 2/3. 

It is necessary to mention here that V L contains the fourth-order 
moment of the density distribution. It is particularly hard to calculate such 
a high moment of the distribution and a calculation requires very large 
numbers of iterations. Challa et al. report that they achieved a time of 
1.6/~sec per update. My Fortran program running on a Ridge 32 minicom- 
puter took 320 #sec per update. The maximum number of iterations that 
was feasible was 105/lattice site. The results therefore have large statistical 
errors but they are accurate enough to exclude the second-order transition. 

I have also plotted the locations of the minima of VL and the maxima 
of the specific heat and the compressibility as well as the heights of these 
peaks (Figs. 8-t2).  It is important for the present argument that these 
quantities scale with the volume V= L 2 of the system (or l /V, respectively) 
as is typical for a first-order transitionJ 29 34) In a second-order transition 
one would see anomalous exponents related to v, the exponent of the 
correlation length. (35~~ 

2 See ref. 38 for a recent review on finite-size scaling. 
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Fig. 8. Height of peaks of specific heat vs. L 2. 
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5. H O W  VAL ID  ARE THE RESULTS?--SERIES E X P A N S I O N S  

Finally, I address the question of whether the results of the Monte 
Carlo simulation can be trusted. I point out here that ref. 48 deals with a 
similar task, namely to verify the first-order character of the transition in 
the Q > 4 Potts model. There also the second derivatives seem to diverge so 
that no hysteresis loop is seen. 
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Fig. 9. Height of peaks of compressibility vs. L 2. 
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It is straightforward to obtain the first few terms in a low- and a high- 
density expansion in this model. The results are given by 

p = qz4(1 4- al  z4 + a2z  8 -t- a 3 z  12 -F " - )  (t4) 

in the low-density phase and 

p = ~  1 ~-  )55+ ... (15) 
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Fig. 11. Location of maxima of specific heat vs. 1/L 2. 
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in the high-density phase. The coefficients ai and Ai are polynomials in 
Xl,Xz ,  y l , y 2 ,  and q. These polynomials are listed in the Appendix. 
Figure 13 shows an example of how well the series and the Monte Carlo 
data agree. 

Finally, since the Monte Carlo results confirm the theoretical predic- 
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Fig. 13. Series vs. Monte Carlo. MC from 14 x 14 lattice, 1000 iterations per lattice site, 
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tions and the series expansions in turn verify the Monte Carlo data, I feel 
confident about the Monte Carlo results. I further believe that the data 
support the hypothesis that EL is a first-order coexistence curve. I remark 
here that the expression for the free energy of this model is identical to the 
one of the Q-state Potts model, where q and Q are related by 

q2 
QPotts-- (16) 

q -- 1 

So the present case (q=  3) would correspond to the Q = 9/2 Potts model. 

6. C O N C L U S I O N  

I believe I have given strong evidence that the exactly solvable line E L 

of the q-state generalization of the hard-square model is a first-order 
coexistence curve. This fact is in itself interesting since there exists a belief 
that on an exactly solvable first-order manifold the Boltzmann weights are 
parametrizable in terms of hyperbolic functions. The classic example for 
this is the Potts model, where for Q~<4 the parametrization is 
trigonometric and for Q > 4 hyperbolic. This model would furnish another 
example where this belief is true. 

I have applied a finite-size scaling method recently suggested by Challa 
et al. This method is based on a phenomenological approach, but it gives 
very accurate answers for the Potts model. In this case the method predicts 
that the phase transition is of first order. There are also theoretical 
indications that this should be the case. So this new method not only 
strengthens my argument, it also proves itself. To appreciate this, one 
should note that the model considered here has a property that sets it apart 
from the Potts model, namely, it has a large number of forbidden states. It 
is not a priori  clear that the Monte Carlo method should work in this 
model at all, but apparently it does. Also, that Challa et al.'s analysis works 
is a nontrivial observation. 

At this point there are two avenues to persue: First, one might try to 
calculate some more quantities exactly, such as the discontinuities across 
EL .  Maybe this study provides enough hints to go about such a 
calculation. Second, the method used here can be applied to other lattice 
systems, in particular the case q = 2/2o) I believe that this is a particularly 
interesting case: The weights are less restricted there since some conditions 
are trivially satisfied. Correspondingly, one finds weights parametrized in 
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terms of elliptic functions; the exactly solvable manifold is simply much 
larger. Also, this model lends itself very naturally to applications. 

Altogether I believe that numerical methods naturally extend exact 
solutions. The exact results in turn provide milestones against which 
numerical results can be checked. More often than not, numerical results 
alone leave considerable doubt  as to their validity and accuracy. 

APPENDIX  

The expressions for the series coefficients ai and A i are  

al = 2 (s + t--~ q) 

a2= 3 (s2 + t2 +4st--14q(s + t)+~-q 2) 

a 3 = 4  s3+t3+8s2t+8st2--19q(s2+ta)--39qst - q(s2+t 2) 

181 
+--~-q(s+ t)+ [XLX2+ (q-  1) ylY212 + ( q -  1) 

837 } 
;'( ['21 72 + 22 Yl + (q --  2) Yl Y2] 2 + T q3 

where s = Xl + (q - 1) Yl and t = x2 + (q - 2) Y2 and 

1 1 ( 1 +  {2(1 1 5) 
- XlX2~ (q--l) XlYlX2+X2x2Y2-- 2122 

1 + 1 4 ) 
+ 2[a2 + r2 +(q-- 2)(crzZ +e2r)] 21YlX ~ 22Y2X21 ~2122 

+ 2 v 2 [ a ( q -  2) - 1] 1 +2a2[r(q-2)+ 1] XlYlX 2 

+,ql) E3  ( '  1 
- . - 5 - . . 2  - 1 6  Xl ylx~ t -  - -  -r xlx2 +x~ y~ 2 2 X2Yl 

+21 y422 Y2] 0"4Z'4) 
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A 2 = - 2  ~ + ( q  - -  1 )  O~2"b "2 
x l x  2 x :  2 x l  

+ +.-7-...2 - -  x l Y 2 + y l x ~  2 2 X1X 2 

+..-7575..3 4 - - 4  + 
X1X2 7 ~ 2  ~I-X2Y2X1 

61 

-- 8 ( L  "~- L~ -{- y~y21 -}- X~24 }) \X 1 X2,] 

A 3 = - - 3  .-72..4 ~ .-7-. ,5 4 - - 8  + - - - -  
XlX2 XlX2 Z " ~ 2  

where a = y l / x l  and r = yz / x2 .  

311} 
3 X l X  2 
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